NHA2 promotes cyst development in an in vitro model of polycystic kidney disease.
Hari PrasadDonna K DangKalyan C KondapalliNiranjana NatarajanValeriu CebotaruRajini RaoPublished in: The Journal of physiology (2018)
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2 encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The molecular pathways linking polycystins to cyst development in ADPKD are still unclear. Intracystic fluid secretion via ion transporters and channels plays a crucial role in cyst expansion in ADPKD. Unexpectedly, we observed significant and selective up-regulation of NHA2, a member of the SLC9B family of Na+ /H+ exchangers, that correlated with cyst size and disease severity in ADPKD patients. Using three-dimensional cultures of MDCK cells to model cystogenesis in vitro, we showed that ectopic expression of NHA2 is causal to increased cyst size. Induction of PC1 in MDCK cells inhibited NHA2 expression with concordant inhibition of Ca2+ influx through store-dependent and -independent pathways, whereas reciprocal activation of Ca2+ influx by the dominant negative membrane-anchored C-terminal tail fragment of PC1 elevated NHA2. We showed that NHA2 is a target of Ca2+ /NFAT signalling and is transcriptionally induced by methylxanthine drugs such as caffeine and theophylline, which are contraindicated in ADPKD patients. Finally, we observed robust induction of NHA2 by vasopressin, which is physiologically consistent with increased levels of circulating vasopressin and up-regulation of vasopressin V2 receptors in ADPKD. Our findings have mechanistic implications on the emerging use of vasopressin V2 receptor antagonists such as tolvaptan as safe and effective therapy for polycystic kidney disease and reveal a potential new regulator of transepithelial salt and water transport in the kidney.
Keyphrases
- polycystic kidney disease
- end stage renal disease
- ejection fraction
- newly diagnosed
- induced apoptosis
- poor prognosis
- chronic kidney disease
- peritoneal dialysis
- prognostic factors
- cell cycle arrest
- gene expression
- heart failure
- cell proliferation
- climate change
- patient reported outcomes
- single molecule
- signaling pathway
- inflammatory response
- cell death
- patient reported
- pi k akt