Login / Signup

Exploring the Physical Properties of Lipid Membranes with Polyhydroxy Oxanorbornane Head Group Using NBD-Conjugated and DPH Fluorescent Probes.

Anand Kumar SahuU Chandrasekhar ReddyMuraleedharan K ManheriAshok Kumar Mishra
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
The present study focuses on exploring the physical properties of lipid membranes based on the polyhydroxy oxanorbornane (PH-ONB) headgroup, designed as synthetic analogues of naturally occurring archaeal lipid membranes. Specifically, we study two variants of PH-ONB headgroup-based lipids differing in the number of hydroxy groups present in the headgroup, with one having two hydroxy groups (ONB-2OH) and the other having three (ONB-3OH). These lipids form stable bilayer membranes. The study begins with a comprehensive analysis of the fluorescence characteristics of nitrobenzoxadiazole (NBD)-tagged ONB-based lipids in different solvent environments and within a model lipid membrane 1,2-dimyristoyl- sn -glycero-3-phosphocholine (DMPC). Subsequently, the physical properties of the ONB-based membranes were examined by using an NBD-tagged ONB-based probe and a commonly used extrinsic 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescent probe. The steady-state and time-resolved fluorescence properties of the NBD-tagged ONB-based probe and DPH were used to compare the physical properties of the ONB-based membranes, including polarity, fluidity, phase transition, order, hydration, location, heterogeneity, and rotational diffusion. The solid gel to liquid crystalline phase transition temperatures of ONB-2OH and ONB-3OH lipid membranes are found to be (68 ± 1) °C and (74 ± 1) °C, respectively. The variation in organization (size), fluidity, and phase transition temperature of ONB-based lipid membranes is explained by the extent of hydrogen bonding interactions between lipid head groups. ONB-based membranes exhibit characteristics similar to those of phospholipid membranes and possess a notably high phase transition temperature. These properties make them a promising and cost-effective synthetic alternative to archaeal lipid membranes with a wide range of potential applications.
Keyphrases
  • fatty acid
  • living cells
  • physical activity
  • fluorescent probe
  • mental health
  • quantum dots
  • single molecule
  • ionic liquid
  • hyaluronic acid