Inhibition of Human Respiratory Influenza A Virus and Human Betacoronavirus-1 by the Blend of Double-Standardized Extracts of Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L.
Michał OchnikDominika FranzMaciej SobczyńskiPiotr NaporowskiMariusz BanachBeata OrzechowskaMarta SochockaPublished in: Pharmaceuticals (Basel, Switzerland) (2022)
Viral and bacterial diseases are among the greatest concerns of humankind since ancient times. Despite tremendous pharmacological progress, there is still a need to search for new drugs that could treat or support the healing processes. A rich source of bioactive compounds with antiviral potency include plants such as black chokeberry and elderberry. The aim of this study was to assess the in vitro antiviral ability of an originally designed double-standardized blend of extracts from Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. (EAM-ESN) or separated extracts of A. melanocarpa (EAM) or S. nigra (ESN) against four human respiratory tract viruses: influenza A virus (A/H1N1), betacoronavirus-1 (HCoV-OC43) belonging to the same β-coronaviruses as the current pandemic SARS-CoV-2, human herpesvirus type 1 (HHV-1), and human adenovirus type 5 (HAdV-5). Antiviral assays (AVAs) were used to evaluate the antiviral activity of the plant extracts in a cell-present environment with extracts tested before, simultaneously, or after viral infection. The virus replication was assessed using the CPE scale or luminescent assay. The EAM-ESN blend strongly inhibited A/H1N1 replication as well as HCoV-OC43, while having a limited effect against HHV-1 and HAdV-5. This activity likely depends mostly on the presence of the extract of S. nigra . However, the EAM-ESN blend possesses more effective inhibitory activity toward virus replication than its constituent extracts. A post-infection mechanism of action of the EAM-ESN make this blend the most relevant for potential drugs and supportive treatments; thus, the EAM-ESN blend might be considered as a natural remedy in mild, seasonal respiratory viral infections.