Sensing Gas Mixtures by Analyzing the Spatiotemporal Optical Responses of Liquid Crystals Using 3D Convolutional Neural Networks.
Nanqi BaoShengli JiangAlexander SmithJames J SchauerManos MavrikakisReid C Van LehnVictor M ZavalaNicholas L AbbottPublished in: ACS sensors (2022)
We report how analysis of the spatial and temporal optical responses of liquid crystal (LC) films to targeted gases, when performed using a machine learning methodology, can advance the sensing of gas mixtures and provide important insights into the physical processes that underlie the sensor response. We develop the methodology using O 3 and Cl 2 mixtures (representative of an important class of analytes) and LCs supported on metal perchlorate-decorated surfaces as a model system. Although O 3 and Cl 2 both diffuse through LC films and undergo redox reactions with the supporting metal perchlorate surfaces to generate similar initial and final optical states of the LCs, we show that a three-dimensional convolutional neural network can extract feature information that is encoded in the spatiotemporal color patterns of the LCs to detect the presence of both O 3 and Cl 2 species in mixtures and to quantify their concentrations. Our analysis reveals that O 3 detection is driven by the transition time over which the brightness of the LC changes, while Cl 2 detection is driven by color fluctuations that develop late in the optical response of the LC. We also show that we can detect the presence of Cl 2 even when the concentration of O 3 is orders of magnitude greater than the Cl 2 concentration. The proposed methodology is generalizable to a wide range of analytes, reactive surfaces, and LCs and has the potential to advance the design of portable LC monitoring devices (e.g., wearable devices) for analyzing gas mixtures using spatiotemporal color fluctuations.
Keyphrases
- convolutional neural network
- ionic liquid
- room temperature
- deep learning
- simultaneous determination
- machine learning
- high resolution
- high speed
- biofilm formation
- liquid chromatography
- solid phase extraction
- artificial intelligence
- loop mediated isothermal amplification
- physical activity
- mental health
- tandem mass spectrometry
- staphylococcus aureus
- cross sectional
- risk assessment
- high resolution mass spectrometry
- blood pressure
- cystic fibrosis
- social media
- highly efficient
- neural network
- genetic diversity