Estrogen-induced chromatin looping changes identify a subset of functional regulatory elements.
Hosiana AbeweAlexandra RicheyJeffery M VahrenkampMatthew Ginley-HidingerCraig M RushNoel KitchenXiaoyang ZhangJason GertzPublished in: bioRxiv : the preprint server for biology (2024)
Transcriptional enhancers can regulate individual or multiple genes through long-range three-dimensional (3D) genome interactions, and these interactions are commonly altered in cancer. Yet, the functional relationship between changes in 3D interactions associated with regulatory regions and differential gene expression appears context-dependent. In this study, we used HiChiP to capture changes in 3D genome interactions between active regulatory regions of endometrial cancer cells in response to estrogen treatment and uncovered significant differential long-range interactions that are strongly enriched for estrogen receptor α (ER) bound sites (ERBS). The ERBS anchoring differential loops with either a gene's promoter or distal regions were correlated with larger transcriptional responses to estrogen compared to ERBS not involved in differential interactions. To functionally test this observation, CRISPR-based Enhancer-i was used to deactivate specific ERBS, which revealed a wide range of effects on the transcriptional response to estrogen. However, these effects are only subtly and not significantly stronger for ERBS in differential loops. In addition, we observed an enrichment of 3D interactions between the promoters of estrogen up-regulated genes and found that looped promoters can work together cooperatively. Overall, our work suggests that changes in 3D genome structure upon estrogen treatment identify some functionally important regulatory regions; however, these changes aren't required for a transcriptional response to E2 in endometrial cancer cells.