mRNA-Expression of KRT5 and KRT20 Defines Distinct Prognostic Subgroups of Muscle-Invasive Urothelial Bladder Cancer Correlating with Histological Variants.
Markus EcksteinRalph Markus WirtzMatthias Gross-WeegeJohannes BreyerWolfgang OttoRobert StoehrDanijel SikicBastian KeckSebastian EidtMaximilian BurgerChristian BolenzKatja NitschkeStefan PorubskyArndt HartmannPhilipp ErbenPublished in: International journal of molecular sciences (2018)
Recently, muscle-invasive bladder cancer (MIBC) has been subclassified by gene expression profiling, with a substantial impact on therapy response and patient outcome. We tested whether these complex molecular subtypes of MIBC can be determined by mRNA detection of keratin 5 (KRT5) and keratin 20 (KRT20). Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was applied to quantify gene expression of KRT5 and KRT20 using TaqMan®-based assays in 122 curatively treated MIBC patients (median age 68.0 years). Furthermore, in silico analysis of the MD Anderson Cancer Center (MDACC) cohort (GSE48277 + GSE47993) was performed. High expression of KRT5 and low expression of KRT20 were associated with significantly improved recurrence-free survival (RFS) and disease-specific survival disease specific survival (DSS: 5-year DSS for KRT5 high: 58%; 5-year DSS for KRT20 high: 29%). KRT5 and KRT20 were associated with rates of lymphovascular invasion and lymphonodal metastasis. The combination of KRT5 and KRT20 allowed identification of patients with a very poor prognosis (KRT20⁺/KRT5-, 5-year DSS 0%, p < 0.0001). In silico analysis of the independent MDACC cohorts revealed congruent results (5-year DSS for KRT20 low vs. high: 84% vs. 40%, p = 0.042). High KRT20-expressing tumors as well as KRT20⁺/KRT- tumors were significantly enriched with aggressive urothelial carcinoma variants (micropapillary, plasmacytoid, nested).
Keyphrases
- poor prognosis
- gene expression
- free survival
- dna methylation
- long non coding rna
- stem cells
- squamous cell carcinoma
- chronic kidney disease
- end stage renal disease
- high resolution
- newly diagnosed
- immune response
- skeletal muscle
- prognostic factors
- ejection fraction
- peritoneal dialysis
- genome wide
- high throughput
- high grade
- molecular dynamics