Login / Signup

Identification and characterization of α-xylosidase involved in xyloglucan degradation in Aspergillus oryzae.

Tomohiko MatsuzawaAkihiko KameyamaKatsuro Yaoi
Published in: Applied microbiology and biotechnology (2019)
Aspergillus oryzae produces hydrolases involved in xyloglucan degradation and induces the expression of genes encoding xyloglucan oligosaccharide hydrolases in the presence of xyloglucan oligosaccharides. A gene encoding α-xylosidase (termed AxyA), which is induced in the presence of xyloglucan oligosaccharides, is identified and expressed in Pichia pastoris. AxyA is a member of the glycoside hydrolase family 31 (GH31). AxyA hydrolyzes isoprimeverose (α-D-xylopyranosyl-(1→6)-D-glucopyranose) into D-xylose and D-glucose and shows hydrolytic activity with other xyloglucan oligosaccharides such as XXXG (heptasaccharide, Glc4Xyl3) and XLLG (nonasaccharide, Glc4Xyl3Gal2). Isoprimeverose is a preferred AxyA substrate over other xyloglucan oligosaccharides. In the hydrolysis of XXXG, AxyA releases one molecule of D-xylose from one molecule of XXXG to yield GXXG (hexasaccharide, Glc4Xyl2). AxyA does not contain a signal peptide for secretion and remains within the cell. The intracellular localization of AxyA may help determine the order of hydrolases acting on xyloglucan oligosaccharides.
Keyphrases
  • genome wide
  • poor prognosis
  • oxidative stress
  • metabolic syndrome
  • high glucose
  • diabetic rats
  • blood glucose
  • adipose tissue
  • mesenchymal stem cells
  • endothelial cells
  • transcription factor
  • cell wall