Login / Signup

Identification of MicroRNA Targeting Mlph and Affecting Melanosome Transport.

Jeong Ah LeeSeok Joon HwangSung Chan HongCheol Hwan MyungJi Eun LeeJong Il ParkJae-Sung Hwang
Published in: Biomolecules (2019)
Melanosomes undergo a complex maturation process and migrate into keratinocytes. Melanophilin (Mlph), a protein complex involving myosin Va (MyoVa) and Rab27a, enables the movement of melanosomes in melanocytes. In this study, we found six miRNAs targeting Mlph in mouse using two programs (http://targetscan.org and DianaTools). When melan-a melanocytes were treated with six synthesized microRNAs, miR-342-5p, miR-1839-5p, and miR-3082-5p inhibited melanosome transport and induced melanosome aggregation around the nucleus. The other microRNAs, miR-5110, miR-3090-3p, and miR-186-5p, did not inhibit melanosome transport. Further, miR-342-5p, miR-1839-5p, and miR-3082-5p decreased Mlph expression. The effect of miR-342-5p was the strongest among the six synthesized miRNAs. It inhibited melanosome transport in melan-a melanocytes and reduced Mlph expression in mRNA and protein levels in a dose-dependent manner; however, it did not affect Rab27a and MyoVa expressions, which are associated with melanosome transport. To examine miR-342-5p specificity, we performed luciferase assays in a mouse melanocyte-transfected reporter vector including Mlph at the 3'-UTR (untranslated region). When treated with miR-342-5p, luciferase activity that had been reduced by approximately 50% was restored after inhibitor treatment. Therefore, we identified a novel miRNA affecting Mlph and melanosome transport, and these results can be used for understanding Mlph expression and skin pigmentation regulation.
Keyphrases
  • binding protein
  • poor prognosis
  • long non coding rna
  • cell proliferation
  • public health
  • oxidative stress
  • smoking cessation
  • endothelial cells
  • stress induced
  • high glucose