Login / Signup

Desensitizing mouse cardiac troponin C to calcium converts slow muscle towards a fast muscle phenotype.

Svetlana TikunovaNatalya BelevychKelly DoanPeter J Reiser
Published in: The Journal of physiology (2018)
The missense mutation, D73N, in mouse cardiac troponin C has a profound impact on cardiac function, mediated by a decreased myofilament Ca2+ sensitivity. Mammalian cardiac muscle and slow skeletal muscle normally share expression of the same troponin C isoform. Therefore, the objective of this study was to determine the consequences of the D73N mutation in skeletal muscle, as a potential mechanism that contributes to the morbidity associated with heart failure or other conditions in which Ca2+ sensitivity might be altered. Effects of the D73N mutation on physiological properties of mouse soleus muscle, in which slow-twitch fibres are prevalent, were examined. The mutation resulted in a rightward shift of the force-stimulation frequency relationship, and significantly faster kinetics of isometric twitches and tetani in isolated soleus muscle. Furthermore, soleus muscles from D73N mice underwent a significantly greater reduction in force during a fatigue test. The mutation significantly reduced slow fibre mean cross-sectional area without affecting soleus fibre type composition. The effects of the mutation on Ca2+ sensitivity of force development in soleus skinned slow and fast fibres were also examined. As expected, the D73N mutation did not affect the Ca2+ sensitivity of force development in fast fibres but resulted in substantially decreased Ca2+ sensitivity in slow fibres. The results demonstrate that a point mutation in a single constituent of myofilaments (slow/cardiac troponin C) led to major changes in physiological properties of skeletal muscle and converted slow muscle toward a fast muscle phenotype with reduced fatigue resistance and Ca2+ sensitivity of force generation.
Keyphrases