Login / Signup

A Review of Machine Learning Methods Recently Applied to FTIR Spectroscopy Data for the Analysis of Human Blood Cells.

Ahmed FadlelmoulaSusana Oliveira CatarinoGraça MinasVitor Hugo Carvalho
Published in: Micromachines (2023)
Machine learning (ML) is a broad term encompassing several methods that allow us to learn from data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision-making. This paper presents a review of articles that discuss the use of Fourier transform infrared (FTIR) spectroscopy and ML for human blood analysis between the years 2019-2023. The literature review was conducted to identify published research of employed ML linked with FTIR for distinction between pathological and healthy human blood cells. The articles' search strategy was implemented and studies meeting the eligibility criteria were evaluated. Relevant data related to the study design, statistical methods, and strengths and limitations were identified. A total of 39 publications in the last 5 years (2019-2023) were identified and evaluated for this review. Diverse methods, statistical packages, and approaches were used across the identified studies. The most common methods included support vector machine (SVM) and principal component analysis (PCA) approaches. Most studies applied internal validation and employed more than one algorithm, while only four studies applied one ML algorithm to the data. A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of ML methods. There is a need to ensure that multiple ML approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that the discrimination of human blood cells is being made with the highest efficient evidence.
Keyphrases