Association of SNPs in Lipid Metabolism Gene Single Nucleotide Polymorphism with the Risk of Obesity in Children.
Elizaveta D KulaevaVarvara V VolchikOlga V BocharovaElena D TeplakovaMikhail A ShkuratEkaterina G DerevyanchukElena V MashkinaPublished in: Genetic testing and molecular biomarkers (2021)
Background: Obesity is one of the most common metabolic disorders in the world, which develops due to an imbalance in energy consumption and expenditure, and both genetic and environmental factors are of great importance. We investigated the potential interactions of single nucleotide polymorphisms that might contribute to the development of polygenic obesity in children. Objective: The study involved 367 children and adolescents of both sexes aged from 4 to 18 years. The control group (normal weight) and the overweight groups included 65 and 302 children respectively. Methods: DNA for analysis was isolated from peripheral blood lymphocytes, then allelic variants rs99305069 of the FTO gene (chr16:53786615), Gln192Arg of the PON1 gene (chr7: 95308134), -250G>A of the LIPC gene (chr15: 58431740), and Ser447Ter of the LPL gene (chr8:19957678) were studied using the SNP-Express reagent kit. The results of allelic interactions were analyzed using the multifactor dimensionality reduction method. Results and Discussion: Among overweight children, the distribution of genotype and allele frequencies for the studied single nucleotide polymorphisms of the four genes corresponded to those of the control group (p > 0.05). It was found that in obese children SerSer homozygotes at the Ser447Ter polymorphism of the LPL gene, had serum triglyceride (TG) levels 2.3 times higher than in children with the same genotype from the control group. In overweight Ser447Ter heterozygotes (p < 0.0001), the TG level exceeded the control values by only 13% (p = 0.044). A two-locus genotype FTO AT/LPL SerTer, was associated with a reduced risk of childhood obesity.