Technical note: Estimating original crown height in worn mandibular canines using aspects of dentin morphology.
Gina McFarlaneBruce FloydCaitlin SmithPatrick MahoneyPublished in: American journal of physical anthropology (2021)
We present a novel method to estimate original crown height (OCH) for worn human mandibular canines using a cubic regression equation based on ratios of worn crown height and exposed dentin. This method may help alleviate issues frequently presented by worn teeth in dental analyses, including those in bioarchaeology. Mandibular canines (n = 28) from modern day New Zealand and English populations were selected. Crown height and dentin thickness were measured on dental thin sections (n = 19) and the resulting (log10) ratios were fitted to a cubic regression curve allowing OCH in worn crowns to be predicted. Variation in the dentin apex position was recorded and effects of angled wear slopes investigated allowing adjusted values to be generated. Our method is trialed for use on intact and sectioned teeth (n = 17). A cubic regression curve best describes the relationship between (log10) ratios and crown height deciles (R2 = 0.996, df1 = 3, df2 = 336, p < 0.001). No significant differences were detected between OCH estimates using our method and digitally recreated cusp outlines of the same crowns (t = 1.024, df = 16, p > 0.05), with a mean absolute error of 0.171 mm and an adjusted coefficient of determination of 0.923. Our approach offers a quantitative method to estimate the percentage of OCH remaining on worn mandibular canines, and by extension, the OCH. Our estimates are comparable to digitally recreated cusps but less subjective and not limited to crowns with minimal wear.