Metabolic and Molecular Amplification of Insulin Secretion.
Mourad FerdaoussiPublished in: Advances in anatomy, embryology, and cell biology (2024)
The pancreatic β cells are at the hub of myriad signals to regulate the secretion of an adequate amount of insulin needed to re-establish postprandial euglycemia. The β cell possesses sophisticated metabolic enzymes and a variety of extracellular receptors and channels that amplify insulin secretion in response to autocrine, paracrine, and neurohormonal signals. Considerable research has been undertaken to decipher the mechanisms regulating insulin secretion. While the triggering pathway induced by glucose is needed to initiate the exocytosis process, multiple other stimuli modulate the insulin secretion response. This chapter will discuss the recent advances in understanding the role of the diverse glucose- and fatty acid-metabolic coupling factors in amplifying insulin secretion. It will also highlight the intracellular events linking the extracellular receptors and channels to insulin secretion amplification. Understanding these mechanisms provides new insights into learning more about the etiology of β-cell failure and paves the way for developing new therapeutic strategies for type 2 diabetes.