Login / Signup

Influence of Intensity on Post-Running Jump Potentiation in Recreational Runners vs. Physically Active Individuals.

Cristiano Rafael MoréRita Adriana Stoeterau MoréDaniel A BoullosaRodolfo André Dellagrana
Published in: Journal of human kinetics (2023)
The aim of this study was to verify post-activation performance enhancement (PAPE) in jumping and sprinting after two endurance volume-equated running protocols with different intensities, in runners vs. active individuals. Nine recreational runners (age: 34.5 ± 9.3 years, body mass: 73.1 ± 11.9 kg, body height: 1.76 ± 0.06 m, 17.4 ± 4.4 %body fat; maximum aerobic speed [MAS]: 16.4 ± 1.0 km•h -1 ), and 9 active individuals (age: 34.1 ± 9.4 years; body mass: 83.2 ± 7.7 kg; body height: 1.79 ± 0.06 m; 25.6 ± 5.4 %body fat; MAS: 13.3 ± 1.2 km•h -1 ) volunteered for participation. The evaluations were performed over three days as follows: 1) anthropometric measures, physical fitness tests, and the University of Montreal Track Test (UMTT) to determine MAS and the distance to be covered in the running protocols; 2 and 3) the countermovement jump (CMJ) and the flying 20-m sprint (SPRINT) were assessed pre- and post-running at 70% of MAS or a time trial race (TTR), equated by volume and completed in random order. A three-way ANOVA (time*group*running) was performed to analyze the PAPE effects. The results showed a time effect (F = 10 .716; p < 0.01) and a group*running interaction (F = 12.094; p < 0.01) for the CMJ, indicating that active individuals demonstrated PAPE after running at 70% of MAS, while for runners both running interventions (70% of MAS and TTR) induced PAPE in CMJ performances. For the SPRINT, a time*group interaction (F = 4.790; p = 0.044) and a group effect were observed, with runners showing greater SPRINT performances than active individuals. From the current results, it can be suggested that training background and intensity can modulate PAPE responses in jumping and sprinting after volume-equated running protocols at different intensities.
Keyphrases
  • high intensity
  • resistance training
  • clinical trial
  • physical activity
  • skeletal muscle
  • mild cognitive impairment
  • oxidative stress
  • randomized controlled trial