Login / Signup

Exploration of Fungicidal Activity and Mode of Action of Ferimzone Analogs.

Yue ZhangJing LiXiaoyu LiuWei GaoShuoshuo SongYaping RongLinyu TanTatiana V GlukharevaVasiliy A BakulevZhi-Jin Fan
Published in: Journal of agricultural and food chemistry (2023)
Lead discovery and molecular target identification are important for developing novel pesticides. Scaffold hopping, an effective approach of modern medicinal and agrochemical chemistry for a rational design of target molecules, is aiming to design novel molecules with similar structures and similar/better biological performance. Herein, 24 new ferimzone derivatives were designed and synthesized by a scaffold-hopping strategy. In vitro bioassays indicated that compound 5o showed similar potency to ferimzone against Cercospora arachidicola and 2-fold higher potency than ferimzone against Alternaria solani . Compounds 5q , 6a , and 6d displayed fungicidal activity with EC 50 values ranging from 1.17 to 3.84 μg/mL against Rhizoctonia solani , and compounds 5q and 6a displayed 1.6-1.8-fold higher activity than ferimzone against Fusarium graminearum . The in vivo bioassays at 200 μg/mL indicated that compound 5q was more potent than ferimzone against Pyricularia oryzae (90% vs 70% efficacy, respectively). Density functional theory (DFT) calculations elucidated the structure-energy relationship. Although the mode of action of ferimzone is still unclear, studies suggested that compound 5q significantly inhibited the growth and reproduction of R. solani , and its energy metabolism pathways (e.g., starch, sucrose, lipids, and glutathione) were seriously downregulated after a 5q treatment.
Keyphrases
  • density functional theory
  • molecular dynamics
  • small molecule
  • risk assessment
  • high throughput
  • fatty acid
  • case control
  • drug discovery