Login / Signup

Genetic variability of aquaporin expression in maize: From eQTLs to a MITE insertion regulating PIP2;5 expression.

Laurie C MaistriauxMaxime J LaurentLinda JeangueninSantiago Alvarez PradoJoseph NaderClaude WelckerAlain CharcossetFrançois TardieuStéphane Dimitri NicolasFrancois Chaumont
Published in: Plant physiology (2024)
Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages, and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of 4 plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through expression quantitative trait locus (eQTL) mapping across a 252-hybrid diversity panel. Significant genetic variability in PIP transcript abundance was observed to different extents depending on the isoforms. The genome-wide association study mapped numerous eQTLs, both local and distant, thus emphasizing the existing natural diversity of PIP gene expression across the studied panel and the potential to reveal regulatory actors and mechanisms. One eQTL associated with PIP2;5 expression variation was characterized. Genomic sequence comparison and in vivo reporter assay attributed, at least partly, the local eQTL to a transposon-containing polymorphism in the PIP2;5 promoter. This work paves the way to the molecular understanding of PIP gene regulation and its possible integration into larger networks regulating physiological and stress adaptation processes.
Keyphrases
  • poor prognosis
  • genome wide
  • gene expression
  • binding protein
  • dna methylation
  • long non coding rna
  • high resolution
  • transcription factor
  • risk assessment
  • crispr cas
  • climate change
  • solid state