Login / Signup

The Mechanism of Selective Recognition of Lipid Substrate by hDHHC20 Enzyme.

Irina S PaninaNikolay A KrylovAnton O ChugunovRoman G EfremovLarisa Valentinovna Kordyukova
Published in: International journal of molecular sciences (2022)
S-acylation is a post-translational linkage of long chain fatty acids to cysteines, playing a key role in normal physiology and disease. In human cells, the reaction is catalyzed by a family of 23 membrane DHHC-acyltransferases (carrying an Asp-His-His-Cys catalytic motif) in two stages: (1) acyl-CoA-mediated autoacylation of the enzyme; and (2) further transfer of the acyl chain to a protein substrate. Despite the availability of a 3D-structure of human acyltransferase (hDHHC20), the molecular aspects of lipid selectivity of DHHC-acyltransferases remain unclear. In this paper, using molecular dynamics (MD) simulations, we studied membrane-bound hDHHC20 right before the acylation by C12-, C14-, C16-, C18-, and C20-CoA substrates. We found that: (1) regardless of the chain length, its terminal methyl group always reaches the "ceiling" of the enzyme's cavity; (2) only for C16, an optimal "reactivity" (assessed by a simple geometric criterion) permits the autoacylation; (3) in MD, some key interactions between an acyl-CoA and a protein differ from those in the reference crystal structure of the C16-CoA-hDHHS20 mutant complex (probably, because this structure corresponds to a non-native dimer). These features of specific recognition of full-size acyl-CoA substrates support our previous hypothesis of "geometric and physicochemical selectivity" derived for simplified acyl-CoA analogues.
Keyphrases
  • fatty acid
  • molecular dynamics
  • density functional theory
  • endothelial cells
  • amino acid
  • protein protein
  • structural basis
  • binding protein
  • dna methylation
  • genome wide
  • molecular docking
  • induced pluripotent stem cells