Login / Signup

Improved neural control of body temperature following heat acclimation in humans.

Hadiatou BarryGeorgia K ChaselingSamuel MoreaultClaudia SauvageauParya BehzadiHugo GravelNicholas RavanelliDaniel Gagnon
Published in: The Journal of physiology (2020)
Heat acclimation improves autonomic temperature regulation in humans. However, the mechanisms that mediate human heat adaptation remain poorly understood. The present study tested the hypothesis that heat acclimation improves the neural control of body temperature. Body temperatures, skin sympathetic nerve activity, cutaneous vasodilatation, and sweat production were measured in 14 healthy adults (nine men and five women, aged 27 ± 5 years) during passive heat stress performed before and after a 7 day heat acclimation protocol. Heat acclimation increased whole-body sweat rate [+0.54 L h-1 (0.32, 0.75), P < 0.01] and reduced resting core temperature [-0.29°C (-0.40, -0.18), P < 0.01]. During passive heat stress, the change in mean body temperature required to activate skin sympathetic nerve activity was reduced [-0.21°C (-0.34, -0.08), P < 0.01] following heat acclimation. The earlier activation of skin sympathetic nerve activity resulted in lower activation thresholds for cutaneous vasodilatation [-0.18°C (-0.35, -0.01), P = 0.04] and local sweat rate [-0.13°C (-0.24, -0.01), P = 0.03]. These results demonstrate that heat acclimation leads to an earlier activation of the neural efferent outflow that activates the heat loss thermoeffectors of cutaneous vasodilatation and sweating.
Keyphrases
  • heat stress
  • heat shock
  • randomized controlled trial
  • type diabetes
  • heart rate
  • blood pressure
  • polycystic ovary syndrome
  • peripheral nerve