Login / Signup

Application-Aware SDN-Based Iterative Reconfigurable Routing Protocol for Internet of Things (IoT).

Ayesha ShafiqueGuo CaoMuhammad AslamMuhammad AsadDengpan Ye
Published in: Sensors (Basel, Switzerland) (2020)
The central intelligence offered by Software Defined Networking (SDN) promise the smart and reliable reconfiguration which enables the scalability of dynamic enterprise networks. The decoupled forwarding plane and control plane of SDN infrastructure is a key feature that supports the SDN controller to extract the physical network topology information at runtime to formulate network reconfigurations. This SDN-based network reconfiguration enables application-aware routing capability for Internet of Thing (IoT). However, these IoT enabled SDN-based routing protocols face some performance limitations in iterative reconfiguration process due to complete centralized path selection mechanism To this end, in this paper, we propose SDN-Based Application-aware Distributed adaptive Flow Iterative Reconfiguring (SADFIR) routing protocol. The proposed routing protocol enables the distributed SDN iterative solver controller to maintain the load-balancing between flow reconfiguration and flow allocation cost. In particular, the proposed routing protocol of SADFIR implements multiple SDN controllers that collaborate with network devices at forwarding plane to develop appropriate clustering strategy for routing the sensed information. This distributed SDN controllers are assisted to clustering topology that successfully map the residual network resources and also enable unique multi-hop application-aware data transmission. In addition, the proposed SADFIR monitor the iterative reconfiguration settings according to the network traffic of heterogeneity-aware network devices. The simulation experiments are conducted in comparison with the state-of-the-art routing protocols which demonstrates that SADFIR is heterogeneity-aware which is able to adopt the different scales of network with maximum network lifetime.
Keyphrases
  • randomized controlled trial
  • single cell
  • magnetic resonance imaging
  • healthcare
  • network analysis
  • machine learning
  • electronic health record
  • dual energy
  • deep learning
  • high density