Login / Signup

Electronic measurement of cell antigen expression in whole blood.

Ozgun CivelekogluRuxiu LiuCan F UsanmazChia-Heng ChuMert BoyaTevhide Ozkaya-AhmadovA K M ArifuzzmanNingquan WangA Fatih Sarioglu
Published in: Lab on a chip (2022)
Membrane antigens are phenotypic signatures of cells used for distinguishing various subpopulations and, therefore, are of great interest for diagnosis of diseases and monitoring of patients in hematology and oncology. Existing methods to measure antigen expression of a target subpopulation in blood samples require labor-intensive lysis of contaminating cells and subsequent analysis with complex and bulky instruments in specialized laboratories. To address this long-standing limitation in clinical cytometry, we introduce a microchip-based technique that can directly measure surface expression of target cells in hematological samples. Our microchip isolates an immunomagnetically-labeled target cell population from the contaminating background in whole blood and then utilizes the differential responses of target cells to on-chip magnetic manipulation to estimate their antigen expression. Moreover, manipulating cells with chip-sized permanent magnets and performing quantitative measurements via an on-chip electrical sensor network allows the assay to be performed in a portable platform with no reliance on laboratory infrastructure. Using our technique, we could successfully measure expressions of the CD45 antigen that is commonly expressed by white blood cells, as well as CD34 that is expressed by scarce hematopoietic progenitor cells, which constitutes only ∼0.0001% of all blood cells, directly from whole blood. With our technology, flow cytometry can potentially become a rapid bedside or at-home testing method that is available around the clock in environments where this invaluable assay with proven clinical utility is currently either outsourced or not even accessible.
Keyphrases