Enhanced serotonin availability amplifies fatigue perception and modulates the TMS-induced silent period during sustained low-intensity elbow flexions.
Jacob R ThorstensenJanet L TaylorMurray G TuckerJustin J KavanaghPublished in: The Journal of physiology (2020)
Enhanced availability of serotonin (5-HT) exacerbates central fatigue that occurs during maximal effort contractions. However, it is unknown if 5-HT release contributes to central fatigue during prolonged submaximal contractions. Hence, we assessed the effect that enhanced availability of 5-HT has on sustained low-intensity fatiguing contractions. Fifteen individuals (22.3 ± 2.1 years) ingested the 5-HT reuptake inhibitor paroxetine in a human, double-blinded, placebo-controlled, repeated-measures design. Participants performed a low-intensity isometric elbow flexion for 30 min (15% of maximal voluntary contraction, MVC). Throughout the protocol, brief MVCs were performed and muscle responses to transcranial magnetic stimulation (TMS) of the motor cortex, electrical stimulation of the brachial plexus, and motor point stimulation of the biceps were obtained. Ratings of perceived fatigue were also acquired. Paroxetine did not influence torque or voluntary activation during brief MVCs performed throughout the low-intensity contraction. However, paroxetine increased the perception of fatigue throughout the contraction (P = 0.005), and shortened the biceps silent period elicited via TMS during sustained submaximal contraction (P = 0.003) and brief MVCs (P = 0.011). Overall, it appears that prolonged low-intensity contractions do not cause intense 5-HT release onto motoneurons, and therefore, 5-HT does not activate inhibitory extra-synaptic 5-HT1A receptors of motoneurons to reduce their output. Although motor performance was unaffected by paroxetine, perceived fatigue was greater and intracortical inhibitory activity was reduced following the enhancement of endogenous concentrations of 5-HT during sustained submaximal contraction. Thus, 5-HT affects supraspinal processes during low-intensity contractions without directly altering motor pathways projecting to the muscle.