Hazard Profiling of Commercially Relevant Quantum Dot Components Revealed Synergistic Interactions between Heavy Metals and Polymers.
Ke XuAude BechuNiladri BasuSubhasis GhoshalAudrey MooresSaji GeorgePublished in: Chemical research in toxicology (2022)
Commercially used quantum dots (QDs) exemplify complex nanomaterials with multiple components, though little is known about the type of interactions between these components in determining the overall toxicity of this material. We synthesized and characterized a functional QD (CdSe/ZnS_P&E) that was identical in structure and composition to a patented and commercially applied QD and the combinations of its components (CdSe, CdSe/ZnS, ZnS, CdSe_P&E, ZnS_P&E, and P&E). Cells exposed to incremental concentrations of these materials were investigated for cell viability and cellular perturbations, contributing to a final common pathway of cell death using high-content screening assays in model human intestinal epithelial cells (HIEC-6). The concentrations that resulted in a loss of 20% cell viability (EC 20 values) for each tested component were used for estimating the combination index (CI) to evaluate synergistic or antagonistic effects between the components. Complete QD (core/shell-polymer) showed the highest toxic potential due to synergistic interactions between core and surface functional groups. The cationic polymer coating enhanced cellular uptake of the QD, ensuing lysosome acidification and release of heavy metal ions to the intracellular milieu, and caused oxidative stress and cytotoxicity. Overall, this study advances our understanding of the collective contribution of individual components of a functional QD toward its toxic potential and emphasizes the need to study multilayered nanomaterials in their entirety for hazard characterization.