The Past 40 Years of Macromolecular Sciences: Reflections on Challenges in Synthetic Polymer and Material Science.
Wolfgang Hubertus BinderPublished in: Macromolecular rapid communications (2018)
Technology and science are often successful in discontinuities ("disruptive innovations" or "leapfrogging"), in turn allowing true, big societal development by entire changes in technology rather than by minuscule stepwise improvements. Examples are the emergence of modern computer science by inventing the field-effect transistor rather than further fine-tuning the "Röhrentransistor"; the development of (organic) light-emitting diodes in advance of the "Gasglühstrumpf"; CRISPR/Cas exceeding any previous genetic method or Ziegler-Natta polymerization enabling stereoregular polypropylene (PP) and high-density polyethylene (HDPE) in advance of free-radical polymerization. Where may the frogs in polymer science in the future "jump" to? Contemplating past achievements in (synthetic) polymer science, such as living polymerization, "click" chemistry, supramolecular chemistry, the potentially "leaping" areas of self-healing and (bio)degradable materials, amyloids, and biomaterials are reflected upon.