Combinatorial ethanol treatment increases the overall productivity of recombinant hG-CSF in E. coli: a comparative study.
Balaram MishraGiridharan MurthyBijayalaxmi SahooSang Jun UhmMukesh Kumar GuptaPublished in: Applied microbiology and biotechnology (2020)
Human granulocyte colony-stimulating factor (hG-CSF) is a cytokine that regulates the proliferation, maturation, and differentiation of precursor cells to neutrophils. In the present study, we report the feasibility of inducing recombinant hG-CSF expression (rhG-CSF) in a pET vector system by combinatorial induction using low-concentration ethanol, IPTG, and lactose and auto-induction media (AIM). The coding sequence of hG-CSF transcript variant 2 was expressed in pET14 vector, and the effect of combinatorial induction was analyzed on inclusion body (IB) formation, biomass, protein purification, and bioactivity. Results showed that there was an inverse relationship between the temperature and soluble expression of rhG-CSF. Three-step washing with Triton-X, 2 M, and 5 M urea resulted in the maximum recovery of IBs. Combinatorial single-spike induction with IPTG, ethanol, and lactose in a batch culture led to a 3-fold increase in the expression of rhG-CSF. It was also observed that low concentration of ethanol (1-3% v/v) could be used in lieu of IPTG for inducing the rhG-CSF protein expression without adversely affecting biomass production. A 2.4-fold increase in productivity was obtained in LB-AIM media with combinatorial ethanol induction, and the overall yield of 2.8 g/L rhG-CSF was found. The purified rhG-CSF was bioactive and increased the cellular proliferation of umbilical cord blood-derived mesenchymal stem cells (U-MSC) by 29%. In conclusion, our study shows that combined ethanol induction can enhance the expression of rhG-CSF with three-step washing for recovery of the proteins from IBs and a single-step purification of rhG-CSF by affinity chromatography. KEY POINTS: • Low concentration of ethanol (1-3%) could be used in lieu of IPTG for inducing rhG-CSF expression. • Combinatorial single-spike induction with IPTG, ethanol, and lactose improved rhG-CSF expression. • Purified rhG-CSF was bioactive and increased the proliferation of U-MSC.
Keyphrases
- poor prognosis
- cerebrospinal fluid
- computed tomography
- mesenchymal stem cells
- endothelial cells
- climate change
- long non coding rna
- positron emission tomography
- high resolution
- wastewater treatment
- cell death
- mass spectrometry
- cell proliferation
- fluorescent probe
- amino acid
- pet imaging
- induced pluripotent stem cells
- cell cycle arrest
- cell free
- single molecule