Login / Signup

Cyclic three-dimensional wall motion of the human ascending and abdominal aorta characterized by time-resolved three-dimensional ultrasound speckle tracking.

Andreas WittekKonstantinos KaratoliosClaus-Peter FritzenJürgen Bereiter-HahnBernhard SchiefferRainer MoosdorfSebastian VogtChristopher Blase
Published in: Biomechanics and modeling in mechanobiology (2016)
The aim of this study was to measure, characterize, and compare the time-resolved three-dimensional wall kinematics of the ascending and the abdominal aorta. Comprehensive description of aortic wall kinematics is an important issue for understanding its physiological functioning and early detection of adverse changes. Data on the three-dimensional, dynamic cyclic deformation of the aorta in vivo are scarce. Either most imaging techniques available are too slow to capture aortic wall motion (CT, MRI) or they do not provide three-dimensional geometry data. Three-dimensional volume data sets of ascending and abdominal aortae of male healthy subjects (25.5 [24.5, 27.5] years) were acquired by use of a commercial echocardiography system with a temporal resolution of 11-25 Hz. Longitudinal and circumferential strain, twist, and relative volume change were determined by use of a commercial speckle tracking algorithm and in-house software. The kinematics of the abdominal aorta is characterized by diameter change, almost constant length and unidirectional, either clockwise or counter clockwise twist. In contrast, the ascending aorta undergoes a complex deformation with alternating clockwise and counterclockwise twist. Length and diameter changes were in the same order of magnitude with a phase shift between both. Longitudinal strain and its phase shift to circumferential strain contribute to the proximal aorta's Windkessel function. Complex cyclic deformations are known to be highly fatiguing. This may account for increased degradation of components of the aortic wall and therefore promote aortic dissection or aneurysm formation.
Keyphrases