A novel visible-light-induced 1,4-hydroxysulfonylation of vinyl enynes with sulfonyl chlorides has been established, providing a highly efficient protocol to access multisubstituted sulfonyl allenic alcohols. Control experiments and mechanistic studies disclose that the target products result from sequential reactions of hydroxyl and tosyl radicals, among which chloride anion plays a key role to generate the requisite •OH, thus bridging water and enynes. Moreover, the vinyl pendant is believed to decisively affect the site-selectivity of hydroxyl radical.