Phenomics and Robust Multiomics Data for Cardiovascular Disease Subtyping.
Enrico MaiorinoJoseph LoscalzoPublished in: Arteriosclerosis, thrombosis, and vascular biology (2023)
The complex landscape of cardiovascular diseases encompasses a wide range of related pathologies arising from diverse molecular mechanisms and exhibiting heterogeneous phenotypes. This variety of manifestations poses significant challenges in the development of treatment strategies. The increasing availability of precise phenotypic and multiomics data of cardiovascular disease patient populations has spurred the development of a variety of computational disease subtyping techniques to identify distinct subgroups with unique underlying pathogeneses. In this review, we outline the essential components of computational approaches to select, integrate, and cluster omics and clinical data in the context of cardiovascular disease research. We delve into the challenges faced during different stages of the analysis, including feature selection and extraction, data integration, and clustering algorithms. Next, we highlight representative applications of subtyping pipelines in heart failure and coronary artery disease. Finally, we discuss the current challenges and future directions in the development of robust subtyping approaches that can be implemented in clinical workflows, ultimately contributing to the ongoing evolution of precision medicine in health care.