The neural substrates responsible for how trait anxiety affects delay discounting: Right hippocampal and cerebellar connectivity with bistable right inferior parietal lobule.
Rong ZhangZhiyi ChenPeiwei LiuTingyong FengPublished in: Psychophysiology (2019)
Delay discounting, an indicator of impulsivity, refers to the extent of devaluing future rewards. Studies have found that individuals with trait anxiety generally depreciate the later larger rewards, showing steeper delay discounting rates. However, little is known about the neural substrates responsible for how trait anxiety affects individuals' delay discounting. To address this question, we employed the voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to explore the neural substrates of trait anxiety responsible for delay discounting. Behavioral results showed that trait anxiety was significantly positively correlated with delay discounting rates. The VBM analysis revealed that gray matter volumes of the right hippocampus (RHPC) and right cerebellum (RCere) were significantly positively correlated with trait anxiety. Moreover, the RSFC results showed that bistable right inferior parietal lobule (RIPL) connectivity with the RHPC and RCere were all inversely associated with trait anxiety. More importantly, mediation analysis indicated that trait anxiety played a completely mediating role in the relation between functional connectivity of RHPC-RIPL and RCere-RIPL and delay discounting. These results suggested that bistable RIPL connectivity with RHPC and RCere could be neural substrates underlying the effect of trait anxiety on delay discounting. On the whole, the current study yields insights into how trait anxiety affects delay discounting and provides a novel account from a neural basis perspective.