Login / Signup

A geno-clinical decision model for the diagnosis of myelodysplastic syndromes.

Nathan RadakovichManja MeggendorferLuca MalcovatiC Beau HiltonMikkael A SekeresJacob ShreveYazan RouphailWencke WalterStephan HutterAnna GalliSara PozziChiara ElenaEric PadronMichael R SavonaAaron T GerdsSudipto MukherjeeYasunobu NagataRami S KomrokjiBabal Kant JhaClaudia HaferlachJaroslaw P MaciejewskiTorsten HaferlachAziz Nazha
Published in: Blood advances (2021)
The differential diagnosis of myeloid malignancies is challenging and subject to interobserver variability. We used clinical and next-generation sequencing (NGS) data to develop a machine learning model for the diagnosis of myeloid malignancies independent of bone marrow biopsy data based on a 3-institution, international cohort of patients. The model achieves high performance, with model interpretations indicating that it relies on factors similar to those used by clinicians. In addition, we describe associations between NGS findings and clinically important phenotypes and introduce the use of machine learning algorithms to elucidate clinicogenomic relationships.
Keyphrases