Genetic Resources and Vulnerabilities of Major Cucurbit Crops.
Rebecca GrumetJames D McCreightCecilia McGregorYiqun WengMichael MazourekKathleen ReitsmaJoanne LabateAngela DavisZhangjun FeiPublished in: Genes (2021)
The Cucurbitaceae family provides numerous important crops including watermelons (Citrullus lanatus), melons (Cucumis melo), cucumbers (Cucumis sativus), and pumpkins and squashes (Cucurbita spp.). Centers of domestication in Africa, Asia, and the Americas were followed by distribution throughout the world and the evolution of secondary centers of diversity. Each of these crops is challenged by multiple fungal, oomycete, bacterial, and viral diseases and insects that vector disease and cause feeding damage. Cultivated varieties are constrained by market demands, the necessity for climatic adaptations, domestication bottlenecks, and in most cases, limited capacity for interspecific hybridization, creating narrow genetic bases for crop improvement. This analysis of crop vulnerabilities examines the four major cucurbit crops, their uses, challenges, and genetic resources. ex situ germplasm banks, the primary strategy to preserve genetic diversity, have been extensively utilized by cucurbit breeders, especially for resistances to biotic and abiotic stresses. Recent genomic efforts have documented genetic diversity, population structure, and genetic relationships among accessions within collections. Collection size and accessibility are impacted by historical collections, current ability to collect, and ability to store and maintain collections. The biology of cucurbits, with insect-pollinated, outcrossing plants, and large, spreading vines, pose additional challenges for regeneration and maintenance. Our ability to address ongoing and future cucurbit crop vulnerabilities will require a combination of investment, agricultural, and conservation policies, and technological advances to facilitate collection, preservation, and access to critical Cucurbitaceae diversity.