Login / Signup

Effects of sodium diacetate and microbial inoculants on fermentation of forage rye.

Yan Fen LiEun Chan JeongLi Li WangHak Jin KimFarhad AhmadiJong Geun Kim
Published in: Journal of animal science and technology (2023)
Rye ( Secale cereale L.) is a valuable annual forage crop in Korea but there is limited information about the impact of chemical and biological additives on fermentation characteristics of the crop. This experiment was conducted to investigate fermentation dynamics of wilted forage rye treated with the following six additives; control (no additive), sodium diacetate applied at 3 g/kg wilted forage weight (SDA3), 6 g/kg wilted forage weight (SDA6), inoculations (10 6 CFU/g wilted forage) of Lactobacillus plantarum (LP), L. buchneri (LB), or LP+LB. The ensiled rye sampled at 1, 2, 3, 5, 10, 20, 30, and 45 days indicated that the acidification occurred fast within five days of storage than the rest of the storage period. The microbial inoculants decline the pH of ensiled forage, more rapidly than the control or SDA treated, which accompanied by the decrease of water-soluble carbohydrates and increase of lactic acid. Compared with the control silage, all treatments suppressed ammonia-nitrogen formation below to 35 g/kg DM throughout the sampling period. Suppression of total microbial counting occurred in SDA6, LP, and LP + LB. The lactic acid production rates were generally higher in microbial inoculation treatments. Acetic acid concentration was lowest in the LP-treated silage and highest in the SDA- and LB-treated silages. The in vitro dry matter (DM) digestibility and total digestible nutrients were the highest in the silage treated with SDA (6 g/kg) at day 45 of ensiling. Based on lower ammonia-nitrogen concentrations and higher feed value, ensiling forage rye treated with SDA at 6 g/kg is promising through enhanced silage quality.
Keyphrases
  • lactic acid
  • microbial community
  • body mass index
  • climate change
  • water soluble
  • newly diagnosed
  • metabolic syndrome
  • physical activity
  • heavy metals
  • weight loss
  • risk assessment
  • social media
  • saccharomyces cerevisiae