Login / Signup

A Fokker-Planck feedback control framework for optimal personalized therapies in colon cancer-induced angiogenesis.

Souvik RoyZui PanSuvra Pal
Published in: Journal of mathematical biology (2022)
In this paper, a new framework for obtaining personalized optimal treatment strategies in colon cancer-induced angiogenesis is presented. The dynamics of colon cancer is given by a Itó stochastic process, which helps in modeling the randomness present in the system. The stochastic dynamics is then represented by the Fokker-Planck (FP) partial differential equation that governs the evolution of the associated probability density function. The optimal therapies are obtained using a three step procedure. First, a finite dimensional FP-constrained optimization problem is formulated that takes input individual noisy patient data, and is solved to obtain the unknown parameters corresponding to the individual tumor characteristics. Next, a sensitivity analysis of the optimal parameter set is used to determine the parameters to be controlled, thus, helping in assessing the types of treatment therapies. Finally, a feedback FP control problem is solved to determine the optimal combination therapies. Numerical results with the combination drug, comprising of Bevacizumab and Capecitabine, demonstrate the efficiency of the proposed framework.
Keyphrases