Transcutaneous delivery of DNA/mRNA for cancer therapeutic vaccination.
Xiaoyi SunLing-Hui ZengYongzhuo HuangPublished in: The journal of gene medicine (2019)
Therapeutic vaccination is a promising strategy for the immunotherapy of cancers. It eradicates cancer cells by evoking and strengthening the patient's own immune system. Because of the easy access and sophisticated immune networks, the skin becomes an ideal target organ for vaccination. Genetic vaccines have been widely investigated, with the advantages of the delivery of multiple antigens and a lower cost for production compared to protein/peptide vaccines. This review summarizes the advances made with respect to the transcutaneous delivery of DNA/mRNA for cancer therapeutic vaccination and also gives a brief description of the immunological milieu of the skin and the importance of dendritic cell-targeting in vaccine delivery, as well as the technologies that aim to facilitate antigen delivery and modulate antigen-presenting cells, thus improving cellular responses. The applications of genetic vaccines encoding tumor antigens delivered through the skin route, both in preclinical and clinical trials, are outlined.