Uncaria tomentosa (cat's claw): a promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARS-CoV-2 spike protein based on molecular modeling.
Andres F Yepes-PérezOscar Herrera-CalderonJorge Quintero-SaumethPublished in: Journal of biomolecular structure & dynamics (2020)
COVID-19 is a novel severe acute respiratory syndrome coronavirus. Currently, there is no effective treatment and vaccines seem to be the solution in the future. Virtual screening of potential drugs against the S protein of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has provided small molecular compounds with a high binding affinity. Unfortunately, most of these drugs do not attach with the binding interface of the receptor-binding domain (RBD)-angiotensin-converting enzyme-2 (ACE-2) complex in host cells. Molecular modeling was carried out to evaluate the potential antiviral properties of the components of the medicinal herb Uncaria tomentosa (cat's claw) focusing on the binding interface of the RBD-ACE-2 and the viral spike protein. The in silico approach starts with protein-ligand docking of 26 Cat's claw key components followed by molecular dynamics simulations and re-docked calculations. Finally, we carried out drug-likeness calculations for the most qualified cat's claw components. The structural bioinformatics approaches led to the identification of several bioactive compounds of U. tomentosa with potential therapeutic effect by dual strong interaction with interface of the RBD-ACE-2 and the ACE-2 binding site on SARS-CoV-2 RBD viral spike. In addition, in silico drug-likeness indices for these components were calculated and showed good predicted therapeutic profiles of these phytochemicals found in U. tomentosa (cat's claw). Our findings suggest the potential effectiveness of cat's claw as complementary and/or alternative medicine for COVID-19 treatment.Communicated by Ramaswamy H. Sarma.
Keyphrases
- sars cov
- angiotensin converting enzyme
- respiratory syndrome coronavirus
- molecular dynamics simulations
- angiotensin ii
- binding protein
- protein protein
- molecular docking
- molecular dynamics
- coronavirus disease
- randomized controlled trial
- amino acid
- human health
- dna binding
- density functional theory
- systematic review
- signaling pathway
- emergency department
- induced apoptosis
- oxidative stress
- combination therapy
- cell cycle arrest
- small molecule
- cell proliferation
- risk assessment
- cell death
- climate change
- transcription factor
- pi k akt
- single molecule
- mass spectrometry
- current status