Login / Signup

Investigation of Agonist Recognition and Channel Properties in a Flatworm Glutamate-Gated Chloride Channel.

Daniel Callau-VázquezStephan Alexander PlessTimothy Lynagh
Published in: Biochemistry (2018)
Glutamate-gated chloride channels (GluCls) are neurotransmitter receptors that mediate crucial inhibitory signaling in invertebrate neuromuscular systems. Their role in invertebrate physiology and their absence from vertebrates make GluCls a prime target for antiparasitic drugs. GluCls from flatworm parasites are substantially different from and are much less understood than those from roundworm and insect parasites, hindering the development of potential therapeutics targeting GluCls in flatworm-related diseases such as schistosomiasis. Here, we sought to dissect the molecular and chemical basis for ligand recognition in the extracellular glutamate binding site of SmGluCl-2 from Schistosoma mansoni, using site-directed mutagenesis, noncanonical amino acid incorporation, and electrophysiological recordings. Our results indicate that aromatic residues in ligand binding loops A, B, and C are important for SmGluCl-2 function. Loop C, which differs in length compared to other pentameric ligand-gated ion channels (pLGICs), contributes to ligand recognition through both an aromatic residue and two vicinal threonine residues. We also show that, in contrast to other pLGICs, the hydrophobic channel gate in SmGluCl-2 extends from the 9' position to the 6' position in the channel-forming M2 helix. The 6' and 9' positions also seem to control sensitivity to the pore blocker picrotoxin.
Keyphrases
  • amino acid
  • magnetic resonance
  • small molecule
  • crispr cas
  • plasmodium falciparum
  • risk assessment
  • magnetic resonance imaging
  • climate change
  • angiotensin converting enzyme
  • aedes aegypti