Login / Signup

Differential Accumulation of sHSPs Isoforms during Desiccation of the Resurrection Plant Haberlea rhodopensis Friv. under Optimal and High Temperature.

Gergana MihailovaMagdalena TchorbadjievaGoritsa RakleovaKatya Georgieva
Published in: Life (Basel, Switzerland) (2023)
Haberlea rhodopensis belongs to the small group of angiosperms that can survive desiccation to air-dry state and quickly restore their metabolism upon rehydration. In the present study, we investigated the accumulation of sHSPs and the extent of non-photochemical quenching during the downregulation of photosynthesis in H. rhodopensis leaves under desiccation at optimum (23 °C) and high temperature (38 °C). Desiccation of plants at 38 °C caused a stronger reduction in photosynthetic activity and corresponding enhancement in thermal energy dissipation. The accumulation of sHSPs was investigated by Western blot. While no expression of sHPSs was detected in the unstressed control sample, exposure of well-hydrated plants to high temperature induced an accumulation of sHSPs. Only a faint signal was observed at 50% RWC when dehydration was applied at 23 °C. Several cross-reacting polypeptide bands in the range of 16.5-19 kDa were observed in plants desiccated at high temperature. Two-dimensional electrophoresis and immunoblotting revealed the presence of several sHSPs with close molecular masses and pIs in the range of 5-8.0 that differed for each stage of treatment. At the latest stages of desiccation, fourteen different sHSPs could be distinguished, indicating that sHSPs might play a crucial role in H. rhodopensis under dehydration at high temperatures.
Keyphrases
  • high temperature
  • poor prognosis
  • south africa
  • signaling pathway
  • magnetic resonance imaging
  • diabetic rats
  • oxidative stress
  • drug induced
  • combination therapy
  • ultrasound guided
  • smoking cessation