Login / Signup

Influence of Microbial Transglutaminase on Physicochemical and Cross-Linking Characteristics of Individual Caseins.

Chun-Chi ChenLiang-Yu ChenDer-Sheng ChanBang-Yuan ChenHsien-Wei TsengJung-Feng Hsieh
Published in: Molecules (Basel, Switzerland) (2020)
The effects of microbial transglutaminase (MTGase) cross-linking on the physicochemical characteristics of individual caseins were investigated. MTGase was used to modify three major individual caseins, namely, κ-casein (κ-CN), αS-casein (αS-CN) and β-casein (β-CN). The SDS-PAGE analysis revealed that MTGase-induced cross-linking occurred during the reaction and that some components with high molecular weights (>130 kDa) were formed from the individual proteins κ-CN, αS-CN and β-CN. Scanning electron microscopy (SEM) and particle size analysis respectively demonstrated that the κ-CN, αS-CN and β-CN particle diameters and protein microstructures were larger and polymerized after MTGase cross-linking. The polymerized κ-CN (~749.9 nm) was smaller than that of β-CN (~7909.3 nm) and αS-CN (~7909.3 nm). The enzyme kinetics results showed KM values of 3.04 × 10-6, 2.37 × 10-4 and 8.90 × 10-3 M for κ-CN, αS-CN and β-CN, respectively, and, furthermore, kcat values of 5.17 × 10-4, 1.92 × 10-3 and 4.76 × 10-2 1/s, for κ-CN, αS-CN and β-CN, respectively. Our results revealed that the cross-linking of β-CN catalyzed by MTGase was faster than that of αS-CN or κ-CN. Overall, the polymers that formed in the individual caseins in the presence of MTGase presented a higher molecular weight and larger particles.
Keyphrases
  • lymph node metastasis
  • squamous cell carcinoma
  • small molecule
  • photodynamic therapy
  • high resolution
  • single cell
  • electron microscopy
  • binding protein