Login / Signup

The Injured Sciatic Nerve Atlas (iSNAT), insights into the cellular and molecular basis of neural tissue degeneration and regeneration.

Xiao-Feng ZhaoLucas D HuffmanHannah HafnerMitre AthaiyaMatthew FinneranAshley L KalinskiRafi KohenCorey G K FlynnRyan PassinoCraig N JohnsonDavid KohrmanRiki KawaguchiLynda YangJeffery L TwissDaniel H GeschwindGabriel CorfasRoman J Giger
Published in: eLife (2022)
Upon trauma, the adult murine PNS displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1-day, 3-days, and 7- days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac in the injured nerve show high glycolytic flux compared to Mo/Mac in blood and dominate the early injury response. They subsequently give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood-nerve-barrier, proliferation of endoneurial and perineurial stromal cells, and accumulation of select serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with Sarm1-/- mice, where Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in Sarm1-/- mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new resource for nerve regeneration, reveals location specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT): https://cdb-rshiny.med.umich.edu/Giger_iSNAT/.
Keyphrases