Traceable Optical Physical Unclonable Functions Based on Germanium Vacancy in Diamonds.
Fuhang JiaoChaonan LinLin DongYi WuYing XiaoZhenfeng ZhangJunlu SunWen-Bo ZhaoShun-Fang LiXun YangPeinan NiLijun WangChong-Xin ShanPublished in: ACS applied materials & interfaces (2024)
Physical unclonable functions (PUFs) have emerged as an unprecedented solution for modern information security and anticounterfeiting by virtue of their inherent unclonable nature derived from distinctive, randomly generated physical patterns that defy replication. However, the creation of traceable optical PUF tags remains a formidable challenge. Here, we demonstrate a traceable PUF system whose unclonability arises from the random distribution of diamonds and the random intensity of the narrow emission from germanium vacancies (GeV) within the diamonds. Tamper-resistant PUF labels can be manufactured on diverse and intricate structural surfaces by blending diamond particles into polydimethylsiloxane (PDMS) and strategically depositing them onto the surface of objects. The resulting PUF codes exhibit essentially perfect uniformity, uniqueness, reproducibility, and substantial encoding capacity, making them applicable as a private key to fulfill the customization demands of circulating commodities. Through integration of a digitized "challenge-response" protocol, a traceable and highly secure PUF system can be established, which is seamlessly compatible with contemporary digital information technology. Thus, the GeV-PUF system holds significant promise for applications in data security and blockchain anticounterfeiting, providing robust and adaptive solutions to address the dynamic demands of these domains.