Hypoxia-Induced circRNAs in Human Diseases: From Mechanisms to Potential Applications.
Qi HuangJuan YangRobby Miguel Wen-Jing GohMingliang YouLingzhi WangZhao-Wu MaPublished in: Cells (2022)
Circular RNAs (circRNAs) are a special class of endogenous RNAs characterized by closed loop structures lacking 5' to 3' polarity and polyadenylated tails. They are widely present in various organisms and are more stable and conserved than linear RNAs. Accumulating evidence indicates that circRNAs play important roles in physiology-related processes. Under pathological conditions, hypoxia usually worsens disease progression by manipulating the microenvironment for inflammation and invasion through various dysregulated biological molecules. Among them, circRNAs, which are involved in many human diseases, including cancer, are associated with the overexpression of hypoxia-inducible factors. However, the precise mechanisms of hypoxic regulation by circRNAs remain largely unknown. This review summarizes emerging evidence regarding the interplay between circRNAs and hypoxia in the pathophysiological changes of diverse human diseases, including cancer. Next, the impact of hypoxia-induced circRNAs on cancer progression, therapeutic resistance, angiogenesis, and energy metabolism will be discussed. Last, but not least, the potential application of circRNAs in the early detection, prognosis, and treatment of various diseases will be highlighted.