Circ_0008305-mediated miR-660/BAG5 axis contributes to hepatocellular carcinoma tumorigenesis.
Fuguo YanBin FanJianchu WangWang WeiQianli TangLibai LuZongjiang LuoJian PuShan-Shan YangPublished in: Cancer medicine (2021)
Increasing circRNAs have attracted a lot of attention because of their significant biological effects in many diseases. It has been reported that circ_0008305 can modulate lung cancer progression. However, the association between circ_0008305 and hepatocellular carcinoma (HCC) needs to be well explored. In this current research, we studied the molecular function and potential mechanism of circ_0008305 in HCC progression. First, it was demonstrated that circ_0008305 was greatly increased in HCC tissues and cells. Moreover, we observed silencing circ_0008305 markedly repressed HCC cells in vitro growth and reduced tumor growth in vivo. Additionally, it was identified that circ_0008305 can act as a sponge of miR-660 while miR-660 targeted Bcl-2-associated athanogene 5 (BAG5). BAG5 belongs to a member of BAG family and it is involved in multiple diseases. We reported that circ_0008305 contributed to the inhibition of miR-660, which resulted in an upregulated expression of BAG5 in HCC. Subsequently, rescue assays were conducted and it was indicated that loss of BAG5 reversed the effects of miR-660 inhibitors on HCC partially. To sum up, it was illustrated by our study that circ_0008305-mediated miR-660-5p/BAG5 axis triggered HCC progression, which could provide a novel insight on the underlying mechanism of HCC progression.