Toxoplasma GRA16 Inhibits NF-κB Activation through PP2A-B55 Upregulation in Non-Small-Cell Lung Carcinoma Cells.
Seung-Hwan SeoSang-Gyun KimJi-Hun ShinDo-Won HamEun-Hee ShinPublished in: International journal of molecular sciences (2020)
Nuclear factor kappa B (NF-κB) activation is a well-known mechanism by which chemoresistance to anticancer agents is reported. It is well-known that irinotecan as a chemotherapeutic drug against non-small-cell lung carcinoma (NSCLC) has limited anticancer effect due to NF-κB activation. In this study, we propose the novel role of GRA16, a dense granule protein of Toxoplasma gondii, as an anticancer agent to increase the effectiveness of chemotherapy via the inhibition of NF-κB activation. To demonstrate this, H1299 cells were stably transfected with GRA16. The anticancer effects of GRA16 were demonstrated as a reduction in tumor size in a mouse xenograft model. GRA16 directly elevated B55 regulatory subunit of protein phosphatase 2A (PP2A-B55) expression in tumor cells, thereby decreasing GWL protein levels and ENSA phosphorylation. This cascade, in turn, induced PP2A-B55 activation and suppressed AKT/ERK phosphorylation and cyclin B1 levels, suggesting reduced cell survival and arrested cell cycle. Moreover, PP2A-B55 activation and AKT phosphorylation inhibition led to NF-κB inactivation via the reduction in inhibitory kappa B kinase beta (IKKβ) levels, de-phosphorylation of inhibitor of kappa B alpha (IκBα), and reduction in the nuclear transit of NF-κB p65. Furthermore, this molecular mechanism was examined under irinotecan treatment. The PP2A-B55/AKT/NF-κB p65 pathway-mediated anticancer effects were only induced in the presence of GRA16, but not in the presence of irinotecan. Moreover, GRA16 synergistically promoted the anticancer effects of irinotecan via the induction of the sub-G1 phase and reduction of cell proliferation. Collectively, irinotecan and GRA16 co-treatment promotes the anticancer effects of irinotecan via NF-κB inhibition and cell cycle arrest induced by GRA16, subsequently increasing the chemotherapeutic effect of irinotecan to NSCLC cells via NF-κB inhibition.
Keyphrases
- nuclear factor
- signaling pathway
- pi k akt
- cell cycle arrest
- cell proliferation
- induced apoptosis
- toll like receptor
- cell cycle
- lps induced
- oxidative stress
- toxoplasma gondii
- small cell lung cancer
- protein kinase
- randomized controlled trial
- cell death
- emergency department
- single cell
- tyrosine kinase
- transcription factor
- stem cells
- epidermal growth factor receptor
- high glucose
- cell therapy
- rectal cancer
- small molecule
- locally advanced
- quantum dots