An Efficient and Secure Energy Trading Approach with Machine Learning Technique and Consortium Blockchain.
Tehreem AshfaqMuhammad Irfan KhalidGauhar AliMohammed A El AffendiJawaid IqbalSaddam HussainSyed Sajid UllahAdamu Sani YahayaRabiya KhalidAbdul MateenPublished in: Sensors (Basel, Switzerland) (2022)
In this paper, a secure energy trading mechanism based on blockchain technology is proposed. The proposed model deals with energy trading problems such as insecure energy trading and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN). EVs face two major problems: finding an optimal charging station and calculating the exact amount of energy required to reach the selected charging station. Moreover, in traditional trading approaches, centralized parties are involved in energy trading, which leads to various issues such as increased computational cost, increased computational delay, data tempering and a single point of failure. Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten load curves and efficiently adjust electricity usage. In this work, communication between EVs and aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain) and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem and reduces computational time. Moreover, an attacker model is designed to check the robustness of the proposed system against double-spending and replay attacks. Security analysis of the proposed smart contract is also given in this paper. Simulation results show that the proposed work efficiently reduces the charging cost and time in a VEN.