Identification and development of Tetra-ARMS PCR-based screening test for a genetic variant of OLA1 (Tyr254Cys) in the human failing heart.
Praveen K DubeyShubham DubeySarojini SinghPurnima Devaki BhatSteven PogwizdPrasanna KrishnamurthyPublished in: PloS one (2024)
Obg-like ATPase 1 (OLA1) protein has GTP and ATP hydrolyzing activities and is important for cellular growth and survival. The human OLA1 gene maps to chromosome 2 (locus 2q31.1), near Titin (TTN), which is associated with familial dilated cardiomyopathy (DCM). In this study, we found that expression of OLA1 was significantly downregulated in failing human heart tissue (HF) compared to non-failing hearts (NF). Using the Sanger sequencing method, we characterized the human OLA1 gene and screened for mutations in the OLA1 gene in patients with failing and non-failing hearts. Among failing and non-failing heart patients, we found 15 different mutations in the OLA1 gene, including two transversions, one substitution, one deletion, and eleven transitions. All mutations were intronic except for a non-synonymous 5144A>G, resulting in 254Tyr>Cys in exon 8 of the OLA1 gene. Furthermore, haplotype analysis of these mutations revealed that these single nucleotide polymorphisms (SNPs) are linked to each other, resulting in disease-specific haplotypes. Additionally, to screen the 254Tyr>Cys point mutation, we developed a cost-effective, rapid genetic screening PCR test that can differentiate between homozygous (AA and GG) and heterozygous (A/G) genotypes. Our results demonstrate that this PCR test can effectively screen for OLA1 mutation-associated cardiomyopathy in human patients using easily accessible cells or tissues, such as blood cells. These findings have important implications for the diagnosis and treatment of cardiomyopathy.
Keyphrases
- endothelial cells
- copy number
- genome wide
- heart failure
- induced pluripotent stem cells
- end stage renal disease
- newly diagnosed
- ejection fraction
- prognostic factors
- chronic kidney disease
- gene expression
- early onset
- single cell
- poor prognosis
- signaling pathway
- small molecule
- cell cycle arrest
- genome wide identification
- patient reported
- pi k akt
- free survival
- genome wide association