Ni(II) ions have been deposited on the Zr6 nodes of a metal-organic framework (MOF), UiO-66, via an ALD-like process (ALD = atomic layer deposition). By varying the number of ALD cycles, three Ni-decorated UiO-66 materials were synthesized. A suite of physical methods has been used to characterize these materials, indicating structural and high-surface-area features of the parent MOF are retained. Elemental analysis via X-ray photoelectron spectroscopy (XPS) indicates that the anchored Ni ions are mainly on surface and near-surface MOF defect sites. Upon activation, all three materials are catalytic for ethylene hydrogenation, but their catalytic activities significantly vary, with the largest clusters displaying the highest per-nickel-atom activity. The study highlights the ease and effectiveness ALD in MOFs (AIM) for synthesizing, specifically, UiO-66-supported NiyOx catalysts.
Keyphrases
- metal organic framework
- quantum dots
- high resolution
- randomized controlled trial
- systematic review
- physical activity
- electron microscopy
- single molecule
- highly efficient
- squamous cell carcinoma
- radiation therapy
- oxide nanoparticles
- computed tomography
- aqueous solution
- positron emission tomography
- pet ct
- dual energy
- rectal cancer