Login / Signup

Spatiotemporal network structure among "friends of friends" reveals contagious disease process.

Carmel WitteLaura L HungerfordBruce A RideoutRebecca PapendickJames H Fowler
Published in: PloS one (2020)
Disease transmission can be identified in a social network from the structural patterns of contact. However, it is difficult to separate contagious processes from those driven by homophily, and multiple pathways of transmission or inexact information on the timing of infection can obscure the detection of true transmission events. Here, we analyze the dynamic social network of a large, and near-complete population of 16,430 zoo birds tracked daily over 22 years to test a novel "friends-of-friends" strategy for detecting contagion in a social network. The results show that cases of avian mycobacteriosis were significantly clustered among pairs of birds that had been in direct contact. However, since these clusters might result due to correlated traits or a shared environment, we also analyzed pairs of birds that had never been in direct contact but were indirectly connected in the network via other birds. The disease was also significantly clustered among these friends of friends and a reverse-time placebo test shows that homophily could not be causing the clustering. These results provide empirical evidence that at least some avian mycobacteriosis infections are transmitted between birds, and provide new methods for detecting contagious processes in large-scale global network structures with indirect contacts, even when transmission pathways, timing of cases, or etiologic agents are unknown.
Keyphrases
  • mental health
  • randomized controlled trial
  • gene expression
  • clinical trial
  • high resolution
  • network analysis
  • rna seq
  • mass spectrometry
  • genome wide
  • social media
  • sensitive detection