Login / Signup

Stereoselective RNA reaction with chiral 2'-OH acylating agents.

Ryuta ShioiLu XiaoSayantan ChatterjeeEric T Kool
Published in: Chemical science (2023)
The reactivity of RNA 2'-OH groups with acylating agents has recently been investigated for high-yield conjugation of RNA strands. To date, only achiral molecules have been studied for this reaction, despite the complex chiral structure of RNA. Here we prepare a set of chiral acylimidazoles and study their stereoselectivity in RNA reactions. Reactions performed with unfolded and folded RNAs reveal that positional selectivity and reactivity vary widely with local RNA macro-chirality. We further document remarkable effects of chirality on reagent reactivity, identifying an asymmetric reagent with 1000-fold greater reactivity than prior achiral reagents. In addition, we identify a chiral compound with higher RNA structural selectivity than any previously reported RNA-mapping species. Further, azide-containing homologs of a chiral dimethylalanine reagent were synthesized and applied to local RNA labeling, displaying 92% yield and 16 : 1 diastereoselectivity. The results establish that reagent stereochemistry and chiral RNA structure are critical elements of small molecule-RNA reactions, and demonstrate new chemical strategies for selective RNA modification and probing.
Keyphrases
  • small molecule
  • nucleic acid
  • ionic liquid
  • gene expression
  • high resolution
  • dna methylation
  • molecular dynamics simulations
  • high density
  • electron transfer