Login / Signup

The effect of a combined cooling intervention on cognitive function in the heat during an intermittent running protocol.

Stacey CoweSimon B CooperRachel MalcolmLouis HallDavid DonkinCaroline D Sunderland
Published in: European journal of sport science (2024)
Despite optimal cognitive function being essential for performance, there is a lack of research on the effectiveness of combined cooling interventions on team sport athlete's cognitive function when exercising in the heat. In a randomised, crossover design, 12 unacclimatised men (age: 22.3 ± 3.0 years, body mass: 73.4 ± 5.1 kg, height: 181.0 ± 5.3 cm and V ˙ O 2 $\dot{\mathrm{V}}{\mathrm{O}}_{2}$ max: 51.2 ± 9.5 mL/kg/min) participated in a control (CON) and combined cooling trial (ice slurry and ice collar; COOL). A battery of cognitive tests were completed prior to, during (at half-time) and following a 90-min intermittent running protocol in the heat (33°C, 50% relative humidity (RH)). Perceptual and physiological measures were taken throughout the protocol. In CON, response times were quicker on the Stroop task complex level (p = 0.002) and the visual search test complex level at full-time (p = 0.014) compared to COOL. During COOL, response times were quicker at half-time on the Stroop task complex level (p = 0.024) compared to CON. Lower rectal temperatures were seen during COOL (CON: 37.44 ± 0.65°C and COOL: 37.28 ± 0.68°C) as well as lower skin, neck and forehead temperatures (main effect of trial, all p < 0.05). Lower ratings of thermal sensation and perceived exertion and enhanced thermal comfort were recorded during COOL (main effect of trial, all p < 0.05). Whilst minimal differences in cognitive function were found when using the combined cooling intervention, the findings highlight a practical and effective strategy to improving many physiological and perceptual responses to intermittent exercise in the heat.
Keyphrases