Login / Signup

An Investigation into the Relative Efficacy of High-Velocity Air-Fuel-Sprayed Hydroxyapatite Implants Based on the Crystallinity Index, Residual Stress, Wear, and In-Flight Powder Particle Behavior.

N JagadeeshanayakaShubham Nitin KeleSudhakar C Jambagi
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
Due to its resemblance to the bone, hydroxyapatite (HA) has been widely used for bioactive surface modification of orthopedic implants. However, it undergoes significant thermal decomposition and phase transformations at a high operating temperature, leading to premature implant failure. This investigation uses high-velocity air-fuel (HVAF) spray, an emerging low-temperature thermal spray technique, to deposit HA over the Ti-6Al-4V substrate. Coating characteristics, such as the crystallinity index and phase analysis, were measured using X-ray diffraction, Raman analysis, and Fourier transform infrared spectroscopy, residual stress using the sin 2 ψ method, and tribological performance by a fretting wear test. The coating retained an over 90% crystallinity index, a crystallite size of 41.04 nm, a compressive residual stress of -229 ± 34.5 MPa, and a wear rate of 1.532 × 10 -3 mm 3 N -1 m -1 . Computational in-flight particle traits of HA particles (5 to 60 μm) were analyzed using computational fluid dynamics; it showed that 90% of particles were deposited at a 700 to 1000 m/s velocity and a 900 to 1450 K temperature with a 2.1 ms mean residence time. In-flight particle oxidation was minimized, and particle impact deformation was maximized, which caused severe plastic deformation, forming crystalline, compressive residual stressed coatings. The thermal decomposition model of low-temperature HVAF-sprayed HA particles helped to understand the implants' crystallinity index, residual stress, and tribological characteristics. Hence, this experimental and computational analysis shows that the HVAF process can be a promising candidate for biomedical applications for having strong and durable implants.
Keyphrases
  • soft tissue
  • stress induced
  • mass spectrometry
  • photodynamic therapy
  • early onset
  • blood flow
  • dna methylation
  • genome wide
  • hydrogen peroxide
  • room temperature
  • lactic acid
  • visible light
  • contrast enhanced