Inorganic iron-sulfur clusters enhance electron transport when used for wiring the NAD-glucose dehydrogenase based redox system.
Aishwarya MahadevanSandun D FernandoPublished in: Mikrochimica acta (2018)
Wiring the active site of an enzyme directly to an electrode is the key to ensuring efficient electron transfer for the proper performance of enzyme-based bioelectronic systems. Iron-sulfur complexes, the first link between proteins and mediating molecules in the biological electron transport chain(s), possess an intrinsic electron transport capability. The authors demonstrate the application of inorganic iron-sulfur clusters (Fe-S) viz. FeS, FeS2, Fe2S3, and Fe3S4, as molecular wires to mediate electron transport between a glucose-selective redox enzyme and the gold electrode. It is shown that Fe-S can emulate the functionality of the natural electron transport chain. Voltammetric studies indicate a significant improvement in electron transport, surface coverage, and resilience achieved by the Fe-S-based glucose anodes when compared to a conventional pyrroloquinoline quinone (PQQ)-based electrode. The Fe-S-based glucose anodes showed glucose oxidation at a potential of +0.5 V vs. Ag/AgCl with Tris-HCl buffer (pH 8) acting as a carrier. The current densities positively correlated with the concentrations of glucose in the range 0.1-100 mM displaying detection limits of 0.77 mM (FeS), 1.22 mM (FeS2), 2.95 mM (Fe2S3), and 14.57 mM (Fe3S4). The metal-anchorable sulfur atom, the strong π-coordinating iron atom, the favorable redox properties, low cost, and natural abundance make Fe-S an excellent electron-mediating relay capable of wiring redox active sites to electrode surfaces. Graphical abstract Schematic representation of inorganic iron-sulfur clusters used as molecular wires to facilitate direct electron transfer between NAD-glucose dehydrogenase and the gold electrode. The iron-sulfur based glucose anodes improve current response to selectively sense glucose concentrations in the range 0.1-100 mM.